[latency] filesrc latency compenstation

:Release Notes:
There are maybe an error in latency measurement related to filesrc
module work

:Detailed Notes:
-

:Testing Performed:
-

:QA Notes:
-

:Issues Addressed:
-
This commit is contained in:
Artur Mukhamadiev 2025-10-11 19:35:12 +03:00
parent 8b9190bb86
commit 420e42daeb

View File

@ -2,11 +2,69 @@ import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import os
import argparse
import logging
# Configure logging to show informational messages
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
prefixImage = 'histograms/'
def parse_args():
parser = argparse.ArgumentParser(prog=__file__)
parser.add_argument('-c', '--compensate', action="store_true")
return parser.parse_args()
cmd_args = None
def get_args():
global cmd_args
if cmd_args is None:
cmd_args = parse_args()
return cmd_args
def plot_latency_data(df):
def create_labels(df):
"""Combines MultiIndex levels (L0-L3) into a single string for notes."""
labels = {}
for i, index in enumerate(df.index):
# Format: L#:value | L#:value | ...
label_parts = [f"L{j}:{val}" for j, val in enumerate(index)]
labels[i + 1] = " | ".join(label_parts)
return labels
df = df.head(10)
encoder_name = df.index.get_level_values(0)[0]
max_notes = create_labels(df)
bar_width = 0.25
num_configs = len(df)
r1 = np.arange(num_configs)
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]
fig = plt.figure(figsize=(10, 6), dpi=300)
# Create the bars
plt.bar(r1, df['max'], color='red', width=bar_width, edgecolor='grey', label='Max Latency')
plt.bar(r2, df['avg'], color='blue', width=bar_width, edgecolor='grey', label='Avg Latency')
plt.bar(r3, df['median'], color='green', width=bar_width, edgecolor='grey', label='Median Latency')
# Add labels and ticks
plt.xlabel('Индекс конфигурации', fontweight='bold')
plt.ylabel('Общая задержка [мс]', fontweight='bold')
plt.xticks([r + bar_width for r in range(num_configs)], [str(i + 1) for i in range(num_configs)])
plt.title(f'Сравнение производительности {num_configs} лучших конфигураций по задержке для {encoder_name}')
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.6)
plt.tight_layout()
plt.savefig(prefixImage + f'combined_top_configurations_plot_{encoder_name}.png')
plt.close()
# Output Notes (for user interpretation)
print("\n--- Notes for Plot (X-Axis Index to Configuration) ---")
for index, note in max_notes.items():
print(f"Index {index}: {note}")
def analyze_latency_data(csv_path: str):
"""
Analyzes latency data to find the top 10 components (rows) contributing most
@ -30,7 +88,12 @@ def analyze_latency_data(csv_path: str):
#calculate summary along the rows
sumDf = df.sum()
print(sumDf.info())
if get_args().compensate == True:
logging.info("Filesrc latency compensation is ON")
filesrcData = df.loc["filesrc0"]
sumDf -= filesrcData
print(sumDf.head())
# return
df_summary = sumDf.unstack(level=-1) # or level='Metric' if names are set
@ -61,52 +124,12 @@ def analyze_latency_data(csv_path: str):
df_common_top_performers = df_summary.loc[common_indices]
print(df_common_top_performers.head())
def create_labels(df):
"""Combines MultiIndex levels (L0-L3) into a single string for notes."""
labels = {}
for i, index in enumerate(df.index):
# Format: L#:value | L#:value | ...
label_parts = [f"L{j}:{val}" for j, val in enumerate(index)]
labels[i + 1] = " | ".join(label_parts)
return labels
df_common_top_performers =df_common_top_performers.head(10)
encoder_name = df_common_top_performers.index.get_level_values(0)[0]
max_notes = create_labels(df_common_top_performers)
bar_width = 0.25
num_configs = len(df_common_top_performers)
r1 = np.arange(num_configs)
r2 = [x + bar_width for x in r1]
r3 = [x + bar_width for x in r2]
fig = plt.figure(figsize=(10, 6), dpi=300)
# Create the bars
plt.bar(r1, df_common_top_performers['max'], color='red', width=bar_width, edgecolor='grey', label='Max Latency')
plt.bar(r2, df_common_top_performers['avg'], color='blue', width=bar_width, edgecolor='grey', label='Avg Latency')
plt.bar(r3, df_common_top_performers['median'], color='green', width=bar_width, edgecolor='grey', label='Median Latency')
# Add labels and ticks
plt.xlabel('Индекс конфигурации', fontweight='bold')
plt.ylabel('Общая задержка [мс]', fontweight='bold')
plt.xticks([r + bar_width for r in range(num_configs)], [str(i + 1) for i in range(num_configs)])
plt.title(f'Сравнение производительности {num_configs} лучших конфигураций по задержке для {encoder_name}')
plt.legend()
plt.grid(axis='y', linestyle='--', alpha=0.6)
plt.tight_layout()
plt.savefig(f'combined_top_configurations_plot_{encoder_name}.png')
plt.close()
# Output Notes (for user interpretation)
print("\n--- Notes for MAX Plot (X-Axis Index to Configuration) ---")
for index, note in max_notes.items():
print(f"Index {index}: {note}")
# Sort
plot_latency_data(df_common_top_performers)
return
if __name__ == '__main__':
parse_args()
# Set the path to your CSV file here.
csv_filename = 'results/latencyDataframenvv4l2h264enc.csv'
csv_filename = 'sample/latencyDataframenvh264enc.csv'
analyze_latency_data(csv_filename)