diff --git a/gstreamerAutotest.py b/gstreamerAutotest.py index 6bcadc6..3e67040 100644 --- a/gstreamerAutotest.py +++ b/gstreamerAutotest.py @@ -224,4 +224,5 @@ def run_autotest(): qualityDataframe.to_csv(f"qualityResults{encoder}.csv") latencyDataframe.to_csv(f"latencyDataframe{encoder}.csv") -run_autotest() \ No newline at end of file +if __name__ == "__main__": + run_autotest() \ No newline at end of file diff --git a/latencyParse.py b/latencyParse.py index ab74639..ecaa3dc 100644 --- a/latencyParse.py +++ b/latencyParse.py @@ -93,4 +93,5 @@ def getLatencyTable(filename): print(resultDf) return resultDf -# getLatencyTable("latency_traces-x264enc-kpop-test-10.log") +if __name__ == "__main__": + getLatencyTable("latency_traces-x264enc-kpop-test-10.log") diff --git a/qa.py b/qa.py index 3f1e901..1a4c032 100644 --- a/qa.py +++ b/qa.py @@ -79,40 +79,42 @@ def parse_quality_report(psnr_metrics, ssim_metrics): combined = combined.fillna(0) return combined -# psnr, ssim = run_quality_check( -# "base-x264enc-kpop-test-10.yuv", -# "encoded-x264enc-kpop-test-10.mp4", -# "-pixel_format yuv420p -color_range tv -video_size 1920x1080 -framerate 23.98 " -# ) -# combined = parse_quality_report( -# psnr, -# ssim -# ) +if __name__ == "__main__": + psnr, ssim = run_quality_check( + "base-x264enc-kpop-test-10.yuv", + "encoded-x264enc-kpop-test-10.mp4", + "-pixel_format yuv420p -color_range tv -video_size 1920x1080 -framerate 23.98 " + ) -# encoder = "x264enc" -# profile = "main" -# params = "bitrate=5000" + combined = parse_quality_report( + psnr, + ssim + ) -# columns = pd.MultiIndex.from_tuples( -# [(encoder, profile, params, col) for col in combined.columns] -# ) + encoder = "x264enc" + profile = "main" + params = "bitrate=5000" -# combined.columns = columns + columns = pd.MultiIndex.from_tuples( + [(encoder, profile, params, col) for col in combined.columns] + ) -# main_df = combined -# profile = "baseline" + combined.columns = columns -# combined2 = parse_quality_report( -# psnr, -# ssim -# ) -# columns = pd.MultiIndex.from_tuples( -# [(encoder, profile, params, col) for col in combined2.columns] -# ) -# combined2.columns = columns -# main_df = pd.concat([main_df, combined2], axis=1) -# print(main_df) + main_df = combined + profile = "baseline" -# main_df.to_csv("quality_report.csv") + combined2 = parse_quality_report( + psnr, + ssim + ) + columns = pd.MultiIndex.from_tuples( + [(encoder, profile, params, col) for col in combined2.columns] + ) + combined2.columns = columns + main_df = pd.concat([main_df, combined2], axis=1) + print(main_df) + + main_df.to_csv("quality_report.csv")