#!/usr/bin/python from itertools import product import qa from latencyParse import getLatencyTable import os, stat, subprocess import pandas as pd from extra import log_args_decorator options = { "x264enc": { "bitrate": ["10000", "20000", "5000"], "speed-preset": ["ultrafast", "fast", "medium"], "tune": ["zerolatency"], "sliced-threads": ["true", "false"], "b-adapt": ["true", "false"], "rc-lookahead": ["40", "0"], "ref": ["3", "0"] }, "nvh264enc": { "bitrate": ["10000", "20000", "5000"], "preset": ["4", "5", "1"], "rc-lookahead": ["0"], "rc-mode": ["2", "0", "5"], "zerolatency": ["true", "false"], }, "nvv4l2h264enc": { "bitrate": ["10000000", "20000000", "5000000"], "profile": ["0", "1", "2"], "preset-id": ["1", "2", "3"], "control-rate": ["1", "2"], "idrinterval": ["1", "256"], "tuning-info-id": ["4", "2", "3"] } } videos = { "base-daVinci": "./test.yuv" } testsource = "videotestsrc pattern=smpte" videosrc = { "raw":["filesrc location=", " ! rawvideoparse "], "h264": ["filesrc location=", " ! decodebin"] } psnr_check = { "x264enc": "-pixel_format yuv420p -color_range pc", "nvh264enc": "-pixel_format nv12 -color_range tv", "nvv4l2h264enc": "-pixel_format nv12 -color_range tv" } with_docker = [ "nvv4l2h264enc" ] repeats = 3 formats = { "x264enc": "I420", "nvh264enc": "NV12", "nvv4l2h264enc": "NV12" } profiles = ["baseline", "main"] videoconvert = { "nvv4l2h264enc": "nvvideoconvert", "nvh264enc": "videoconvert", "x264enc": "videoconvert" } video_info = { "video1":"-video_size 1920x1080 -framerate 23.98", "sample-surgery":"-video_size 1280x720 -framerate 29.97", "base-daVinci": "-video_size 1280x720 -framerate 59.94" } gst_video_info = { "video1":"format=I420,height=1080,width=1920,framerate=24000/1001", "base-daVinci": "format=2 height=720 width=1280 colorimetry=bt601 framerate=60000/1001" } latency_filename = "latency-traces-autotest.log" # Step-by-step: # 1. Generate all combinations for each encoder # 2. For each combination, create a GStreamer pipeline string # 3. Start each pipeline with latency tracing enabled # 3.1 Monitor CPU, GPU and memory usage during each pipeline run (nah, later, maybe) # 4. Start latency parsing script after each pipeline and store results in a pandas dataframe: # - two key columns: encoder name, parameters string # 5. Run PSNR check after each pipeline and add results in the dataframe # 6. Save dataframe to CSV file class Pipeline: def __init__(self): self.pipeline = "gst-launch-1.0 -e " self.options = "" def add_tracing(self): self.pipeline = ( "GST_DEBUG_COLOR_MODE=off " + "GST_TRACERS=\"latency(flags=pipeline+element)\" " + "GST_DEBUG=GST_TRACER:7 GST_DEBUG_FILE=" + latency_filename + " " + self.pipeline ) return self def add_source(self, source): self.pipeline += source + " ! clocksync sync-to-first=true ! " return self def __add_tee(self, encoder): pass #self.pipeline += "tee name=t t. ! queue max-size-time=5000000000 max-size-bytes=100485760 max-size-buffers=1000 ! filesink location=\"base-autotest.yuv\" " def add_encoder(self, encoder, params): self.pipeline += videoconvert[encoder] + " ! " self.pipeline += "capsfilter caps=video/x-raw,format=" + formats[encoder] + " ! " #self.__add_tee(encoder) self.options += " ".join(params) + " " #self.pipeline += "t. ! queue max-size-time=5000000000 max-size-bytes=100485760 max-size-buffers=1000 ! " self.pipeline += encoder + " " self.pipeline += " ".join(params) + " " return self def add_profile(self, profile): self.pipeline += "! capsfilter caps=\"video/x-h264,profile=" + profile + "\" ! " self.options += "profile=" + profile + " " return self def to_file(self, filename): self.pipeline += "h264parse ! mpegtsmux ! filesink location=\"" + filename + "\"" return self def makeVideoSrc(videoName): return videosrc["raw"][0] + videos[videoName] + videosrc["raw"][1] + gst_video_info[videoName] def generateEncoderStrings(): global options result = dict() for encoder, value in options.items(): result[encoder] = generate_combinations(value) return result def generate_combinations(config_dict): """ Generate all combinations of values from a configuration dictionary. Args: config_dict (dict): Dictionary with parameter names as keys and lists of values as values Returns: list: List of strings containing all parameter combinations """ combinations = [] keys = list(config_dict.keys()) value_lists = [config_dict[key] for key in keys] for combo in product(*value_lists): param_strings = [] for key, value in zip(keys, combo): param_strings.append(f"{key}={value}") combinations.append(" ".join(param_strings)) return combinations qualityDataframe = pd.DataFrame() latencyDataframe = pd.DataFrame() dockerRunString = "sudo -S docker container exec deepstream-gst bash" def execPermissions(scriptFile = "to_exec.sh"): current_permissions = os.stat(scriptFile).st_mode new_permissions = current_permissions | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH os.chmod(scriptFile, new_permissions) def writeToExecFile(contents, file): with open(file, "w") as f: f.write(str(contents)) execPermissions(file) def is_docker(func): def wrapper(pipeline): script_name = "to_exec.sh" for encoder in with_docker: if encoder in pipeline: writeToExecFile(pipeline, script_name) pipeline = dockerRunString + f" {script_name}" func(pipeline) return wrapper def is_sudo(pipeline): if pipeline.startswith("sudo"): return True return False def passwordAuth(proc): password = os.getenv("UAUTH") if password is not None: proc.communicate(password) def printLog(file): with open(file, "r") as f: out = f.read() print(out) @is_docker @log_args_decorator def run_pipeline(pipeline): logfile = "pipeline-log.txt" with open(logfile, "w") as f: proc = subprocess.Popen(pipeline, shell=True, stdin=subprocess.PIPE, stdout=f, stderr=subprocess.STDOUT, text=True) if is_sudo(pipeline): passwordAuth(proc) code = proc.wait() printLog(logfile) if proc.returncode != 0: raise Exception("Pipeline failed, see log for details") def time_trace(func): def wrapper(): import time start_time = time.time() func() end_time = time.time() elapsed_time = end_time - start_time print(f"Total execution time: {elapsed_time} seconds") return wrapper @time_trace def run_autotest(): encoders = generateEncoderStrings() for encoder, combinations in encoders.items(): qualityDataframe = pd.DataFrame() latencyDataframe = pd.DataFrame() for params in combinations: for profile in profiles: for videoName, videoPath in videos.items(): for _ in range(repeats): filename = "autotest-" + encoder + "-" + profile + "-test-" + videoName + ".mp4" pipeline = Pipeline() pipeline = ( pipeline.add_tracing() .add_source(makeVideoSrc(videoName)) .add_encoder(encoder, params.split(" ")) .add_profile(profile) .to_file(filename) ) print(pipeline.pipeline) try: run_pipeline(pipeline.pipeline) except Exception as e: print(f"Error occurred: {e}") continue psnr_metrics, ssim_metrics = qa.run_quality_check( videoPath, filename, video_info[videoName] + " " + psnr_check[encoder] ) dfPsnr = qa.parse_quality_report(psnr_metrics, ssim_metrics) print("-----") dfLatency = getLatencyTable(latency_filename) columnsQ = pd.MultiIndex.from_tuples( [(encoder, profile, videoName, params, col) for col in dfPsnr.columns] ) columnsLatency = pd.MultiIndex.from_tuples( [(encoder, profile, videoName, params, col) for col in dfLatency.columns] ) dfPsnr.columns = columnsQ dfLatency.columns = columnsLatency qualityDataframe = pd.concat([qualityDataframe, dfPsnr], axis=1) latencyDataframe = pd.concat([latencyDataframe, dfLatency], axis=1) print("=====") print("Current results:") print(dfPsnr) print(dfLatency) qualityDataframe.to_csv(f"qualityResults{encoder}.csv") latencyDataframe.to_csv(f"latencyDataframe{encoder}.csv") run_autotest()