gstAutotest/qa.py

129 lines
3.9 KiB
Python

#!/usr/bin/python3
import subprocess
import pandas as pd
import logging
def run_psnr_check(original, encoded, video_info):
out = ""
# bad practice, but idgaf
# -f rawvideo {video_info}
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex psnr -f null /dev/null"
with open("ffmpeg-log.txt", "w") as f:
proc = subprocess.run(["ffmpeg", *options.split()],
stdout=f, stderr=subprocess.STDOUT, text=True)
logging.info(f"Return code: {proc.returncode}")
with open("ffmpeg-log.txt", "r") as f:
out = f.read()
return out
def run_ssim_check(original, encoded, video_info):
# bad practice, but idgaf
# -f rawvideo {video_info}
# we don't need additional information with h264 encoded files
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex ssim -f null /dev/null"
with open("ffmpeg-log.txt", "w") as f:
proc = subprocess.run(["ffmpeg", *options.split()],
stdout=f, stderr=subprocess.STDOUT, text=True)
logging.info(f"Return code: {proc.returncode}")
with open("ffmpeg-log.txt", "r") as f:
out = f.read()
return out
def parse_psnr_output(output):
for line in output.splitlines():
if "[Parsed_psnr" in line and "PSNR" in line:
parts = line.split()
y = parts[4].split(":")[1]
u = parts[5].split(":")[1]
v = parts[6].split(":")[1]
avg = parts[7].split(":")[1]
minYUV = parts[8].split(":")[1]
maxYUV = parts[9].split(":")[1]
return {
"Y": y,
"U": u,
"V": v,
"Average": avg,
"MinYUV": minYUV,
"MaxYUV": maxYUV
}
return {}
def parse_ssim_output(output):
for line in output.splitlines():
if "[Parsed_ssim" in line and "SSIM" in line:
parts = line.split()
all_value = parts[10].split(":")[1]
y = parts[4].split(":")[1]
u = parts[6].split(":")[1]
v = parts[8].split(":")[1]
return {
"Y": y,
"U": u,
"V": v,
"Average": all_value
}
return {}
def run_quality_check(original, encoded, option):
psnr_result = run_psnr_check(original, encoded, option)
ssim_result = run_ssim_check(original, encoded, option)
psnr_metrics = parse_psnr_output(psnr_result)
ssim_metrics = parse_ssim_output(ssim_result)
logging.info("PSNR Metrics:", psnr_metrics)
logging.info("SSIM Metrics:", ssim_metrics)
return psnr_metrics, ssim_metrics
def parse_quality_report(psnr_metrics, ssim_metrics):
psnrSeries = pd.Series(psnr_metrics)
ssimSeries = pd.Series(ssim_metrics)
combined = pd.concat([psnrSeries, ssimSeries], axis=1)
combined.columns = ["PSNR", "SSIM"]
combined = combined.fillna(0)
return combined
if __name__ == "__main__":
psnr, ssim = run_quality_check(
"base-x264enc-kpop-test-10.yuv",
"encoded-x264enc-kpop-test-10.mp4",
"-pixel_format yuv420p -color_range tv -video_size 1920x1080 -framerate 23.98 "
)
combined = parse_quality_report(
psnr,
ssim
)
encoder = "x264enc"
profile = "main"
params = "bitrate=5000"
columns = pd.MultiIndex.from_tuples(
[(encoder, profile, params, col) for col in combined.columns]
)
combined.columns = columns
main_df = combined
profile = "baseline"
combined2 = parse_quality_report(
psnr,
ssim
)
columns = pd.MultiIndex.from_tuples(
[(encoder, profile, params, col) for col in combined2.columns]
)
combined2.columns = columns
main_df = pd.concat([main_df, combined2], axis=1)
logging.info(main_df)
main_df.to_csv("quality_report.csv")