autotest implementation

:Release Notes:
-

:Detailed Notes:
-

:Testing Performed:
-

:QA Notes:
-

:Issues Addressed:
-
This commit is contained in:
Artur Mukhamadiev 2025-09-29 19:29:14 +03:00
parent 11096da4e3
commit f6fd5e50c8
3 changed files with 275 additions and 37 deletions

View File

@ -1,32 +1,35 @@
#!/usr/bin/python
from itertools import product
import qa
from latencyParse import getLatencyTable
options = {
"x264enc": {
"bitrate" : ["10000", "20000", "5000"],
"speed-preset" : ["ultrafast", "fast", "medium"],
"bitrate": ["10000", "20000", "5000"],
"speed-preset": ["ultrafast", "fast", "medium"],
"tune": ["zerolatency"],
"slices-threads": ["true", "false"],
"b-adapt": ["true", "false"],
"rc-lookahead": ["40", "0"],
"ref": ["3", "0"]
},
"nvh264enc" : {
"bitrate" : ["10000", "20000", "5000"],
"preset" : ["4", "5", "1"],
"rc-lookahead" : ["0"],
"rc-mode" : ["2", "0", "5"],
"zerolatency": ["true", "false"],
},
"nvv4l2h264enc": {
"bitrate" : ["10000000", "20000000", "5000000"],
"profile": ["0", "1", "2"],
"preset-id": ["1", "2", "3"],
"control-id": ["1", "2"],
"tuning-info-id": ["4", "2"]
"nvh264enc": {
"bitrate": ["10000", "20000", "5000"],
"preset": ["4", "5", "1"],
"rc-lookahead": ["0"],
"rc-mode": ["2", "0", "5"],
"zerolatency": ["true", "false"],
}
# ,
# "nvv4l2h264enc": {
# "bitrate": ["10000000", "20000000", "5000000"],
# "profile": ["0", "1", "2"],
# "preset-id": ["1", "2", "3"],
# "control-id": ["1", "2"],
# "tuning-info-id": ["4", "2"]
# }
}
videos = [""]
@ -41,52 +44,173 @@ psnr_check = {
}
formats = {
"x264enc" : "I420",
"nvh264enc" : "NV12",
"x264enc": "I420",
"nvh264enc": "NV12",
"nvv4l2h264enc": "I420"
}
profiles = ["baseline", "main"]
video_info = {
"video1":"-video_size 1920x1080 -framerate 23.98"
}
latency_filename = "latency-traces-autotest.log"
class Pipeline:
def __init__(self):
self.pipeline = "gst-launch-1.0 -e "
self.options = ""
def add_tracing(self):
self.pipeline = (
"GST_DEBUG_COLOR_MODE=off " +
"GST_TRACERS=\"latency(flags=pipeline+element)\" " +
"GST_DEBUG=GST_TRACER:7 GST_DEBUG_FILE=" + latency_filename + " " +
self.pipeline
)
return self
def add_source(self, source):
self.pipeline += source + " ! videoconvert ! "
return self
def __add_tee(self, encoder):
self.pipeline += "capsfilter caps=video/x-raw,format=" + formats[encoder] + " ! "
self.pipeline += "tee name=t t. ! queue ! filesink location=\"base-autotest.yuv\" "
def add_encoder(self, encoder, params):
self.__add_tee(encoder)
self.options += " ".join(params) + " "
self.pipeline += "t. ! queue ! "
self.pipeline += encoder + " "
self.pipeline += " ".join(params) + " "
return self
def add_profile(self, profile):
self.pipeline += "capsfilter caps=\"video/x-h264,profile=" + profile + "\" ! "
self.options += "profile=" + profile + " "
return self
def to_file(self, filename):
self.pipeline += "h264parse ! mp4mux ! filesink location=\"" + filename + "\""
return self
def makeVideoSrc(idx):
return videosrc[0] + videos[idx] + videosrc[1]
def generateEncoderStrings():
global options
result = dict()
for encoder, value in options.items():
result[encoder] = generate_combinations(value)
return result
def generate_combinations(config_dict):
"""
Generate all combinations of values from a configuration dictionary.
Args:
config_dict (dict): Dictionary with parameter names as keys and lists of values as values
Returns:
list: List of strings containing all parameter combinations
"""
combinations = []
# Get the keys and values in consistent order
keys = list(config_dict.keys())
value_lists = [config_dict[key] for key in keys]
# Generate all combinations using itertools.product
for combo in product(*value_lists):
# Create a list of key=value strings
param_strings = []
for key, value in zip(keys, combo):
param_strings.append(f"{key}={value}")
# Join all parameter strings with space separator
combinations.append(" ".join(param_strings))
return combinations
def generateRecordString(options, ):
pass
# Step-by-step:
# 1. Generate all combinations for each encoder
# 2. For each combination, create a GStreamer pipeline string
# 3. Start each pipeline with latency tracing enabled
# 3.1 Monitor CPU, GPU and memory usage during each pipeline run (nah, later, maybe)
# 4. Start latency parsing script after each pipeline and store results in a pandas dataframe:
# - two key columns: encoder name, parameters string
# 5. Run PSNR check after each pipeline and add results in the dataframe
# 6. Save dataframe to CSV file
import pandas as pd
print(len(generateEncoderStrings()[""]))
qualityDataframe = pd.DataFrame()
latencyDataframe = pd.DataFrame()
def run_pipeline(pipeline):
import subprocess
print("Running pipeline:")
print(pipeline)
with open("pipeline-log.txt", "w") as f:
proc = subprocess.run(pipeline, shell=True, stdout=f, stderr=subprocess.STDOUT, text=True)
print(f"Pipeline finished with return code: {proc.returncode}")
with open("pipeline-log.txt", "r") as f:
out = f.read()
print(out)
if proc.returncode != 0:
raise Exception("Pipeline failed, see log for details")
def run_autotest():
global qualityDataframe, latencyDataframe
encoders = generateEncoderStrings()
for encoder, combinations in encoders.items():
for params in combinations:
for profile in profiles:
for idx in range(len(videos)):
filename = "autotest-" + encoder + "-" + profile + "-test-" + str(idx) + ".mp4"
pipeline = Pipeline()
pipeline = (
pipeline.add_tracing()
.add_source(makeVideoSrc(idx))
.add_encoder(encoder, params.split(" "))
.add_profile(profile)
.to_file(filename)
)
print(pipeline.pipeline)
try:
run_pipeline(pipeline.pipeline)
except Exception as e:
print(f"Error occurred: {e}")
continue
psnr_metrics, ssim_metrics = qa.run_quality_check(
videos[idx],
filename,
video_info[videos[idx]] + " " + psnr_check[encoder]
)
dfPsnr = qa.parse_quality_report(psnr_metrics, ssim_metrics)
print("-----")
dfLatency = getLatencyTable(latency_filename)
columnsQ = pd.MultiIndex.from_tuples(
[(encoder, profile, params, col) for col in dfPsnr.columns]
)
columnsLatency = pd.MultiIndex.from_tuples(
[(encoder, profile, params, col) for col in dfLatency.columns]
)
dfPsnr.columns = columnsQ
dfLatency.columns = columnsLatency
qualityDataframe = pd.concat([qualityDataframe, dfPsnr], axis=1)
latencyDataframe = pd.concat([latencyDataframe, dfLatency], axis=1)
print("=====")
print("Current results:")
print(dfPsnr)
print(dfLatency)
def run_timetracer():
import time
start_time = time.time()
run_autotest()
end_time = time.time()
elapsed_time = end_time - start_time
print(f"Total execution time: {elapsed_time} seconds")
run_timetracer()

View File

@ -51,10 +51,10 @@ def readAndParse(filename):
if name not in result:
result[name] = {"latency":[], "ts":[]}
timeWord = findWord(words, "time=(guint64)")
tsWord = findWord(words, "ts=(guint64)")
result[name]["latency"].append(int(timeWord[14:len(timeWord) - 1])/1e6) # time=(guint64)=14
result[name]["ts"].append(int(tsWord[12:len(tsWord) - 1])/1e9) # ts=(guint64)=12
timeWord = findAndRemove("time=(guint64)")
tsWord = findAndRemove("ts=(guint64)")
result[name]["latency"].append(int(timeWord)/1e6) # time=(guint64)=14
result[name]["ts"].append(int(tsWord)/1e9) # ts=(guint64)=12
return result
@ -81,5 +81,6 @@ def getLatencyTable(filename):
resultDf = pd.concat([df_dt_max, max_latency, avg_latency, median_latency, std_latency], axis=1)
resultDf.columns = ['dTmax', 'max', 'avg', 'median', 'std']
print(resultDf)
return resultDf
getLatencyTable("latency_traces-x264enc-big-pr-main.log")
getLatencyTable("latency_traces-x264enc-kpop-test-10.log")

113
PyScripts/qa.py Normal file
View File

@ -0,0 +1,113 @@
#!/usr/bin/python3
import subprocess
import pandas as pd
def run_psnr_check(original, encoded, video_info):
out = ""
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex psnr -f null /dev/null"
with open("ffmpeg-log.txt", "w") as f:
proc = subprocess.run(["ffmpeg", *options.split()], stdout=f, stderr=subprocess.STDOUT, text=True)
print(f"Return code: {proc.returncode}")
with open("ffmpeg-log.txt", "r") as f:
out = f.read()
return out
def run_ssim_check(original, encoded, video_info):
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex ssim -f null /dev/null"
with open("ffmpeg-log.txt", "w") as f:
proc = subprocess.run(["ffmpeg", *options.split()], stdout=f, stderr=subprocess.STDOUT, text=True)
print(f"Return code: {proc.returncode}")
with open("ffmpeg-log.txt", "r") as f:
out = f.read()
return out
def parse_psnr_output(output):
for line in output.splitlines():
if "[Parsed_psnr" in line and "PSNR" in line:
parts = line.split()
y = parts[4].split(":")[1]
u = parts[5].split(":")[1]
v = parts[6].split(":")[1]
avg = parts[7].split(":")[1]
minYUV = parts[8].split(":")[1]
maxYUV = parts[9].split(":")[1]
return {
"Y": y,
"U": u,
"V": v,
"Average": avg,
"MinYUV": minYUV,
"MaxYUV": maxYUV
}
return {}
def parse_ssim_output(output):
for line in output.splitlines():
if "[Parsed_ssim" in line and "SSIM" in line:
parts = line.split()
all_value = parts[10].split(":")[1]
y = parts[4].split(":")[1]
u = parts[6].split(":")[1]
v = parts[8].split(":")[1]
return {
"Y": y,
"U": u,
"V": v,
"Average": all_value
}
return {}
def run_quality_check(original, encoded, option):
psnr_result = run_psnr_check(original, encoded, option)
ssim_result = run_ssim_check(original, encoded, option)
psnr_metrics = parse_psnr_output(psnr_result)
ssim_metrics = parse_ssim_output(ssim_result)
print ("PSNR Metrics:", psnr_metrics)
print ("SSIM Metrics:", ssim_metrics)
return psnr_metrics, ssim_metrics
def parse_quality_report(psnr_metrics, ssim_metrics):
psnrSeries = pd.Series(psnr_metrics)
ssimSeries = pd.Series(ssim_metrics)
combined = pd.concat([psnrSeries, ssimSeries], axis=1)
combined.columns = ["PSNR", "SSIM"]
combined = combined.fillna(0)
return combined
# psnr, ssim = run_quality_check(
# "base-x264enc-kpop-test-10.yuv",
# "encoded-x264enc-kpop-test-10.mp4",
# "-pixel_format yuv420p -color_range tv -video_size 1920x1080 -framerate 23.98 "
# )
# combined = parse_quality_report(
# psnr,
# ssim
# )
# encoder = "x264enc"
# profile = "main"
# params = "bitrate=5000"
# columns = pd.MultiIndex.from_tuples(
# [(encoder, profile, params, col) for col in combined.columns]
# )
# combined.columns = columns
# main_df = combined
# profile = "baseline"
# combined2 = parse_quality_report(
# psnr,
# ssim
# )
# columns = pd.MultiIndex.from_tuples(
# [(encoder, profile, params, col) for col in combined2.columns]
# )
# combined2.columns = columns
# main_df = pd.concat([main_df, combined2], axis=1)
# print(main_df)
# main_df.to_csv("quality_report.csv")