[autotest] docker execution
This commit is contained in:
parent
f6fd5e50c8
commit
7b92fb6073
5
.gitignore
vendored
5
.gitignore
vendored
@ -1,2 +1,7 @@
|
|||||||
*.log
|
*.log
|
||||||
container/Drivers/*
|
container/Drivers/*
|
||||||
|
__pycache__
|
||||||
|
*.yuv
|
||||||
|
*.mp4
|
||||||
|
*.csv
|
||||||
|
*log*txt
|
||||||
17
PyScripts/extra.py
Normal file
17
PyScripts/extra.py
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
from functools import wraps
|
||||||
|
|
||||||
|
def log_args_decorator(func):
|
||||||
|
"""
|
||||||
|
A decorator that logs the arguments passed to a function.
|
||||||
|
"""
|
||||||
|
@wraps(func)
|
||||||
|
def wrapper(*args, **kwargs):
|
||||||
|
arg_names = func.__code__.co_varnames[:func.__code__.co_argcount]
|
||||||
|
pos_args = dict(zip(arg_names, args))
|
||||||
|
all_args = {**pos_args, **kwargs}
|
||||||
|
|
||||||
|
print(f"Calling function '{func.__name__}' with arguments: {all_args}")
|
||||||
|
result = func(*args, **kwargs)
|
||||||
|
print(f"Function '{func.__name__}' returned: {result}")
|
||||||
|
return result
|
||||||
|
return wrapper
|
||||||
@ -2,17 +2,19 @@
|
|||||||
from itertools import product
|
from itertools import product
|
||||||
import qa
|
import qa
|
||||||
from latencyParse import getLatencyTable
|
from latencyParse import getLatencyTable
|
||||||
|
import os, stat, subprocess
|
||||||
|
import pandas as pd
|
||||||
|
from extra import log_args_decorator
|
||||||
|
|
||||||
options = {
|
options = {
|
||||||
"x264enc": {
|
"x264enc": {
|
||||||
"bitrate": ["10000", "20000", "5000"],
|
"bitrate": ["10000", "20000", "5000"],
|
||||||
"speed-preset": ["ultrafast", "fast", "medium"],
|
"speed-preset": ["ultrafast", "fast", "medium"],
|
||||||
"tune": ["zerolatency"],
|
"tune": ["zerolatency"],
|
||||||
"slices-threads": ["true", "false"],
|
"sliced-threads": ["true", "false"],
|
||||||
"b-adapt": ["true", "false"],
|
"b-adapt": ["true", "false"],
|
||||||
"rc-lookahead": ["40", "0"],
|
"rc-lookahead": ["40", "0"],
|
||||||
"ref": ["3", "0"]
|
"ref": ["3", "0"]
|
||||||
|
|
||||||
},
|
},
|
||||||
"nvh264enc": {
|
"nvh264enc": {
|
||||||
"bitrate": ["10000", "20000", "5000"],
|
"bitrate": ["10000", "20000", "5000"],
|
||||||
@ -20,43 +22,70 @@ options = {
|
|||||||
"rc-lookahead": ["0"],
|
"rc-lookahead": ["0"],
|
||||||
"rc-mode": ["2", "0", "5"],
|
"rc-mode": ["2", "0", "5"],
|
||||||
"zerolatency": ["true", "false"],
|
"zerolatency": ["true", "false"],
|
||||||
|
},
|
||||||
|
"nvv4l2h264enc": {
|
||||||
|
"bitrate": ["10000000", "20000000", "5000000"],
|
||||||
|
"profile": ["0", "1", "2"],
|
||||||
|
"preset-id": ["1", "2", "3"],
|
||||||
|
"control-rate": ["1", "2"],
|
||||||
|
"tuning-info-id": ["4", "2", "3"]
|
||||||
}
|
}
|
||||||
# ,
|
|
||||||
# "nvv4l2h264enc": {
|
|
||||||
# "bitrate": ["10000000", "20000000", "5000000"],
|
|
||||||
# "profile": ["0", "1", "2"],
|
|
||||||
# "preset-id": ["1", "2", "3"],
|
|
||||||
# "control-id": ["1", "2"],
|
|
||||||
# "tuning-info-id": ["4", "2"]
|
|
||||||
# }
|
|
||||||
}
|
}
|
||||||
|
|
||||||
videos = [""]
|
videos = {
|
||||||
|
"base-daVinci": "./base-daVinci-stereo-left-10.yuv"
|
||||||
|
}
|
||||||
|
|
||||||
testsource = "videotestsrc pattern=smpte"
|
testsource = "videotestsrc pattern=smpte"
|
||||||
videosrc = ["filesrc location=", "! qtdemux ! h264parse ! avdec_h264"]
|
|
||||||
|
videosrc = {
|
||||||
|
"raw":["filesrc location=", " ! rawvideoparse "],
|
||||||
|
"h264": ["filesrc location=", " ! decodebin"]
|
||||||
|
}
|
||||||
|
|
||||||
psnr_check = {
|
psnr_check = {
|
||||||
"x264enc": "-pixel_format yuv420p -color_range pc",
|
"x264enc": "-pixel_format yuv420p -color_range pc",
|
||||||
"nvh264enc": "-pixel_format nv12 -color_range tv",
|
"nvh264enc": "-pixel_format nv12 -color_range tv",
|
||||||
"nvv4l2h264enc": "-pixel_format yuv420p -color_range tv"
|
"nvv4l2h264enc": "-pixel_format nv12 -color_range tv"
|
||||||
}
|
}
|
||||||
|
|
||||||
|
with_docker = [ "nvv4l2h264enc" ]
|
||||||
|
|
||||||
formats = {
|
formats = {
|
||||||
"x264enc": "I420",
|
"x264enc": "I420",
|
||||||
"nvh264enc": "NV12",
|
"nvh264enc": "NV12",
|
||||||
"nvv4l2h264enc": "I420"
|
"nvv4l2h264enc": "NV12"
|
||||||
}
|
}
|
||||||
|
|
||||||
profiles = ["baseline", "main"]
|
profiles = ["baseline", "main"]
|
||||||
|
|
||||||
|
encoder_prefix = {
|
||||||
|
"nvv4l2h264enc": " nvvideoconvert !",
|
||||||
|
"nvh264enc": "",
|
||||||
|
"x264enc": ""
|
||||||
|
}
|
||||||
|
|
||||||
video_info = {
|
video_info = {
|
||||||
"video1":"-video_size 1920x1080 -framerate 23.98"
|
"video1":"-video_size 1920x1080 -framerate 23.98",
|
||||||
|
"sample-surgery":"-video_size 1280x720 -framerate 29.97",
|
||||||
|
"base-daVinci": "-video_size 1280x720 -framerate 59.94"
|
||||||
|
}
|
||||||
|
gst_video_info = {
|
||||||
|
"video1":"format=I420,height=1080,width=1920,framerate=24000/1001",
|
||||||
|
"base-daVinci": "format=2 height=720 width=1280 colorimetry=bt601 framerate=60000/1001"
|
||||||
}
|
}
|
||||||
|
|
||||||
latency_filename = "latency-traces-autotest.log"
|
latency_filename = "latency-traces-autotest.log"
|
||||||
|
|
||||||
|
# Step-by-step:
|
||||||
|
# 1. Generate all combinations for each encoder
|
||||||
|
# 2. For each combination, create a GStreamer pipeline string
|
||||||
|
# 3. Start each pipeline with latency tracing enabled
|
||||||
|
# 3.1 Monitor CPU, GPU and memory usage during each pipeline run (nah, later, maybe)
|
||||||
|
# 4. Start latency parsing script after each pipeline and store results in a pandas dataframe:
|
||||||
|
# - two key columns: encoder name, parameters string
|
||||||
|
# 5. Run PSNR check after each pipeline and add results in the dataframe
|
||||||
|
# 6. Save dataframe to CSV file
|
||||||
class Pipeline:
|
class Pipeline:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.pipeline = "gst-launch-1.0 -e "
|
self.pipeline = "gst-launch-1.0 -e "
|
||||||
@ -72,33 +101,34 @@ class Pipeline:
|
|||||||
return self
|
return self
|
||||||
|
|
||||||
def add_source(self, source):
|
def add_source(self, source):
|
||||||
self.pipeline += source + " ! videoconvert ! "
|
self.pipeline += source + " ! clocksync sync-to-first=true ! videoconvert ! "
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def __add_tee(self, encoder):
|
def __add_tee(self, encoder):
|
||||||
self.pipeline += "capsfilter caps=video/x-raw,format=" + formats[encoder] + " ! "
|
self.pipeline += "capsfilter caps=video/x-raw,format=" + formats[encoder] + " ! "
|
||||||
self.pipeline += "tee name=t t. ! queue ! filesink location=\"base-autotest.yuv\" "
|
self.pipeline += "tee name=t t. ! queue max-size-time=5000000000 max-size-bytes=100485760 max-size-buffers=1000 ! filesink location=\"base-autotest.yuv\" "
|
||||||
|
|
||||||
def add_encoder(self, encoder, params):
|
def add_encoder(self, encoder, params):
|
||||||
self.__add_tee(encoder)
|
self.__add_tee(encoder)
|
||||||
self.options += " ".join(params) + " "
|
self.options += " ".join(params) + " "
|
||||||
self.pipeline += "t. ! queue ! "
|
self.pipeline += "t. ! queue max-size-time=5000000000 max-size-bytes=100485760 max-size-buffers=1000 ! "
|
||||||
|
self.pipeline += encoder_prefix[encoder]
|
||||||
self.pipeline += encoder + " "
|
self.pipeline += encoder + " "
|
||||||
self.pipeline += " ".join(params) + " "
|
self.pipeline += " ".join(params) + " "
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def add_profile(self, profile):
|
def add_profile(self, profile):
|
||||||
self.pipeline += "capsfilter caps=\"video/x-h264,profile=" + profile + "\" ! "
|
self.pipeline += "! capsfilter caps=\"video/x-h264,profile=" + profile + "\" ! "
|
||||||
self.options += "profile=" + profile + " "
|
self.options += "profile=" + profile + " "
|
||||||
return self
|
return self
|
||||||
|
|
||||||
def to_file(self, filename):
|
def to_file(self, filename):
|
||||||
self.pipeline += "h264parse ! mp4mux ! filesink location=\"" + filename + "\""
|
self.pipeline += "h264parse ! mpegtsmux ! filesink location=\"" + filename + "\""
|
||||||
return self
|
return self
|
||||||
|
|
||||||
|
|
||||||
def makeVideoSrc(idx):
|
def makeVideoSrc(videoName):
|
||||||
return videosrc[0] + videos[idx] + videosrc[1]
|
return videosrc["raw"][0] + videos[videoName] + videosrc["raw"][1] + gst_video_info[videoName]
|
||||||
|
|
||||||
|
|
||||||
def generateEncoderStrings():
|
def generateEncoderStrings():
|
||||||
@ -133,45 +163,85 @@ def generate_combinations(config_dict):
|
|||||||
|
|
||||||
return combinations
|
return combinations
|
||||||
|
|
||||||
# Step-by-step:
|
|
||||||
# 1. Generate all combinations for each encoder
|
|
||||||
# 2. For each combination, create a GStreamer pipeline string
|
|
||||||
# 3. Start each pipeline with latency tracing enabled
|
|
||||||
# 3.1 Monitor CPU, GPU and memory usage during each pipeline run (nah, later, maybe)
|
|
||||||
# 4. Start latency parsing script after each pipeline and store results in a pandas dataframe:
|
|
||||||
# - two key columns: encoder name, parameters string
|
|
||||||
# 5. Run PSNR check after each pipeline and add results in the dataframe
|
|
||||||
# 6. Save dataframe to CSV file
|
|
||||||
import pandas as pd
|
|
||||||
|
|
||||||
qualityDataframe = pd.DataFrame()
|
qualityDataframe = pd.DataFrame()
|
||||||
latencyDataframe = pd.DataFrame()
|
latencyDataframe = pd.DataFrame()
|
||||||
|
dockerRunString = "sudo -S docker container exec deepstream-gst bash"
|
||||||
|
|
||||||
def run_pipeline(pipeline):
|
def execPermissions(scriptFile = "to_exec.sh"):
|
||||||
import subprocess
|
current_permissions = os.stat(scriptFile).st_mode
|
||||||
print("Running pipeline:")
|
new_permissions = current_permissions | stat.S_IXUSR | stat.S_IXGRP | stat.S_IXOTH
|
||||||
print(pipeline)
|
os.chmod(scriptFile, new_permissions)
|
||||||
with open("pipeline-log.txt", "w") as f:
|
|
||||||
proc = subprocess.run(pipeline, shell=True, stdout=f, stderr=subprocess.STDOUT, text=True)
|
def writeToExecFile(contents, file):
|
||||||
print(f"Pipeline finished with return code: {proc.returncode}")
|
with open(file, "w") as f:
|
||||||
with open("pipeline-log.txt", "r") as f:
|
f.write(str(contents))
|
||||||
|
execPermissions(file)
|
||||||
|
|
||||||
|
def is_docker(func):
|
||||||
|
def wrapper(pipeline):
|
||||||
|
script_name = "to_exec.sh"
|
||||||
|
for encoder in with_docker:
|
||||||
|
if encoder in pipeline:
|
||||||
|
writeToExecFile(pipeline, script_name)
|
||||||
|
pipeline = dockerRunString + f" {script_name}"
|
||||||
|
|
||||||
|
func(pipeline)
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
def is_sudo(pipeline):
|
||||||
|
if pipeline.startswith("sudo"):
|
||||||
|
return True
|
||||||
|
return False
|
||||||
|
|
||||||
|
def passwordAuth(proc):
|
||||||
|
password = os.getenv("UAUTH")
|
||||||
|
if password is not None:
|
||||||
|
proc.communicate(password)
|
||||||
|
|
||||||
|
def printLog(file):
|
||||||
|
with open(file, "r") as f:
|
||||||
out = f.read()
|
out = f.read()
|
||||||
print(out)
|
print(out)
|
||||||
|
|
||||||
|
@is_docker
|
||||||
|
@log_args_decorator
|
||||||
|
def run_pipeline(pipeline):
|
||||||
|
logfile = "pipeline-log.txt"
|
||||||
|
with open(logfile, "w") as f:
|
||||||
|
proc = subprocess.Popen(pipeline, shell=True,
|
||||||
|
stdin=subprocess.PIPE, stdout=f,
|
||||||
|
stderr=subprocess.STDOUT, text=True)
|
||||||
|
if is_sudo(pipeline):
|
||||||
|
passwordAuth(proc)
|
||||||
|
code = proc.wait()
|
||||||
|
printLog(logfile)
|
||||||
if proc.returncode != 0:
|
if proc.returncode != 0:
|
||||||
raise Exception("Pipeline failed, see log for details")
|
raise Exception("Pipeline failed, see log for details")
|
||||||
|
|
||||||
|
def time_trace(func):
|
||||||
|
def wrapper():
|
||||||
|
import time
|
||||||
|
start_time = time.time()
|
||||||
|
func()
|
||||||
|
end_time = time.time()
|
||||||
|
elapsed_time = end_time - start_time
|
||||||
|
print(f"Total execution time: {elapsed_time} seconds")
|
||||||
|
return wrapper
|
||||||
|
|
||||||
|
@time_trace
|
||||||
def run_autotest():
|
def run_autotest():
|
||||||
global qualityDataframe, latencyDataframe
|
|
||||||
encoders = generateEncoderStrings()
|
encoders = generateEncoderStrings()
|
||||||
for encoder, combinations in encoders.items():
|
for encoder, combinations in encoders.items():
|
||||||
|
qualityDataframe = pd.DataFrame()
|
||||||
|
latencyDataframe = pd.DataFrame()
|
||||||
for params in combinations:
|
for params in combinations:
|
||||||
for profile in profiles:
|
for profile in profiles:
|
||||||
for idx in range(len(videos)):
|
for videoName, videoPath in videos.items():
|
||||||
filename = "autotest-" + encoder + "-" + profile + "-test-" + str(idx) + ".mp4"
|
filename = "autotest-" + encoder + "-" + profile + "-test-" + videoName + ".mp4"
|
||||||
pipeline = Pipeline()
|
pipeline = Pipeline()
|
||||||
pipeline = (
|
pipeline = (
|
||||||
pipeline.add_tracing()
|
pipeline.add_tracing()
|
||||||
.add_source(makeVideoSrc(idx))
|
.add_source(makeVideoSrc(videoName))
|
||||||
.add_encoder(encoder, params.split(" "))
|
.add_encoder(encoder, params.split(" "))
|
||||||
.add_profile(profile)
|
.add_profile(profile)
|
||||||
.to_file(filename)
|
.to_file(filename)
|
||||||
@ -183,18 +253,18 @@ def run_autotest():
|
|||||||
print(f"Error occurred: {e}")
|
print(f"Error occurred: {e}")
|
||||||
continue
|
continue
|
||||||
psnr_metrics, ssim_metrics = qa.run_quality_check(
|
psnr_metrics, ssim_metrics = qa.run_quality_check(
|
||||||
videos[idx],
|
videoPath,
|
||||||
filename,
|
filename,
|
||||||
video_info[videos[idx]] + " " + psnr_check[encoder]
|
video_info[videoName] + " " + psnr_check[encoder]
|
||||||
)
|
)
|
||||||
dfPsnr = qa.parse_quality_report(psnr_metrics, ssim_metrics)
|
dfPsnr = qa.parse_quality_report(psnr_metrics, ssim_metrics)
|
||||||
print("-----")
|
print("-----")
|
||||||
dfLatency = getLatencyTable(latency_filename)
|
dfLatency = getLatencyTable(latency_filename)
|
||||||
columnsQ = pd.MultiIndex.from_tuples(
|
columnsQ = pd.MultiIndex.from_tuples(
|
||||||
[(encoder, profile, params, col) for col in dfPsnr.columns]
|
[(encoder, profile, videoName, params, col) for col in dfPsnr.columns]
|
||||||
)
|
)
|
||||||
columnsLatency = pd.MultiIndex.from_tuples(
|
columnsLatency = pd.MultiIndex.from_tuples(
|
||||||
[(encoder, profile, params, col) for col in dfLatency.columns]
|
[(encoder, profile, videoName, params, col) for col in dfLatency.columns]
|
||||||
)
|
)
|
||||||
dfPsnr.columns = columnsQ
|
dfPsnr.columns = columnsQ
|
||||||
dfLatency.columns = columnsLatency
|
dfLatency.columns = columnsLatency
|
||||||
@ -204,13 +274,7 @@ def run_autotest():
|
|||||||
print("Current results:")
|
print("Current results:")
|
||||||
print(dfPsnr)
|
print(dfPsnr)
|
||||||
print(dfLatency)
|
print(dfLatency)
|
||||||
|
qualityDataframe.to_csv(f"qualityResults{encoder}.csv")
|
||||||
|
latencyDataframe.to_csv(f"latencyDataframe{encoder}.csv")
|
||||||
|
|
||||||
def run_timetracer():
|
run_autotest()
|
||||||
import time
|
|
||||||
start_time = time.time()
|
|
||||||
run_autotest()
|
|
||||||
end_time = time.time()
|
|
||||||
elapsed_time = end_time - start_time
|
|
||||||
print(f"Total execution time: {elapsed_time} seconds")
|
|
||||||
|
|
||||||
run_timetracer()
|
|
||||||
@ -8,12 +8,16 @@ import numpy as np
|
|||||||
|
|
||||||
idxCache = dict()
|
idxCache = dict()
|
||||||
|
|
||||||
|
|
||||||
def findWord(words, wordToSearch):
|
def findWord(words, wordToSearch):
|
||||||
global idxCache
|
global idxCache
|
||||||
if wordToSearch in idxCache:
|
if wordToSearch in idxCache:
|
||||||
for idx in idxCache[wordToSearch]:
|
for idx in idxCache[wordToSearch]:
|
||||||
if words[idx].startswith(wordToSearch):
|
if idx < len(words) and words[idx].startswith(wordToSearch):
|
||||||
return words[idx]
|
return words[idx]
|
||||||
|
else:
|
||||||
|
if idx >= len(words):
|
||||||
|
print(f"ERROR: trying to access index={idx} while: {words}")
|
||||||
for word in words:
|
for word in words:
|
||||||
if word.startswith(wordToSearch):
|
if word.startswith(wordToSearch):
|
||||||
idx = words.index(word)
|
idx = words.index(word)
|
||||||
@ -24,9 +28,11 @@ def findWord(words, wordToSearch):
|
|||||||
return ""
|
return ""
|
||||||
|
|
||||||
# taken with love from GStreamerLatencyPlotter implementation
|
# taken with love from GStreamerLatencyPlotter implementation
|
||||||
|
|
||||||
|
|
||||||
def readAndParse(filename):
|
def readAndParse(filename):
|
||||||
result = dict()
|
result = dict()
|
||||||
|
global idxCache
|
||||||
with open(filename, "r") as latencyFile:
|
with open(filename, "r") as latencyFile:
|
||||||
lines = latencyFile.readlines()
|
lines = latencyFile.readlines()
|
||||||
for line in lines:
|
for line in lines:
|
||||||
@ -49,12 +55,15 @@ def readAndParse(filename):
|
|||||||
src = findAndRemove("src=(string)")
|
src = findAndRemove("src=(string)")
|
||||||
name = name[name.find(")") + 1:len(name) - 1]
|
name = name[name.find(")") + 1:len(name) - 1]
|
||||||
if name not in result:
|
if name not in result:
|
||||||
result[name] = {"latency":[], "ts":[]}
|
result[name] = {"latency": [], "ts": []}
|
||||||
|
|
||||||
timeWord = findAndRemove("time=(guint64)")
|
timeWord = findAndRemove("time=(guint64)")
|
||||||
tsWord = findAndRemove("ts=(guint64)")
|
tsWord = findAndRemove("ts=(guint64)")
|
||||||
result[name]["latency"].append(int(timeWord)/1e6) # time=(guint64)=14
|
result[name]["latency"].append(
|
||||||
result[name]["ts"].append(int(tsWord)/1e9) # ts=(guint64)=12
|
int(timeWord)/1e6) # time=(guint64)=14
|
||||||
|
result[name]["ts"].append(int(tsWord)/1e9) # ts=(guint64)=12
|
||||||
|
# drop cache for future runs
|
||||||
|
idxCache = dict()
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
@ -78,9 +87,10 @@ def getLatencyTable(filename):
|
|||||||
dt_max_latency[column] = dt
|
dt_max_latency[column] = dt
|
||||||
|
|
||||||
df_dt_max = pd.Series(dt_max_latency)
|
df_dt_max = pd.Series(dt_max_latency)
|
||||||
resultDf = pd.concat([df_dt_max, max_latency, avg_latency, median_latency, std_latency], axis=1)
|
resultDf = pd.concat(
|
||||||
|
[df_dt_max, max_latency, avg_latency, median_latency, std_latency], axis=1)
|
||||||
resultDf.columns = ['dTmax', 'max', 'avg', 'median', 'std']
|
resultDf.columns = ['dTmax', 'max', 'avg', 'median', 'std']
|
||||||
print(resultDf)
|
print(resultDf)
|
||||||
return resultDf
|
return resultDf
|
||||||
|
|
||||||
getLatencyTable("latency_traces-x264enc-kpop-test-10.log")
|
# getLatencyTable("latency_traces-x264enc-kpop-test-10.log")
|
||||||
|
|||||||
@ -4,6 +4,8 @@ import pandas as pd
|
|||||||
|
|
||||||
def run_psnr_check(original, encoded, video_info):
|
def run_psnr_check(original, encoded, video_info):
|
||||||
out = ""
|
out = ""
|
||||||
|
# bad practice, but idgaf
|
||||||
|
# -f rawvideo {video_info}
|
||||||
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex psnr -f null /dev/null"
|
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex psnr -f null /dev/null"
|
||||||
with open("ffmpeg-log.txt", "w") as f:
|
with open("ffmpeg-log.txt", "w") as f:
|
||||||
proc = subprocess.run(["ffmpeg", *options.split()], stdout=f, stderr=subprocess.STDOUT, text=True)
|
proc = subprocess.run(["ffmpeg", *options.split()], stdout=f, stderr=subprocess.STDOUT, text=True)
|
||||||
@ -13,6 +15,9 @@ def run_psnr_check(original, encoded, video_info):
|
|||||||
return out
|
return out
|
||||||
|
|
||||||
def run_ssim_check(original, encoded, video_info):
|
def run_ssim_check(original, encoded, video_info):
|
||||||
|
# bad practice, but idgaf
|
||||||
|
# -f rawvideo {video_info}
|
||||||
|
# we don't need additional information with h264 encoded files
|
||||||
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex ssim -f null /dev/null"
|
options = f"-f rawvideo {video_info} -i {original} -i {encoded} -filter_complex ssim -f null /dev/null"
|
||||||
with open("ffmpeg-log.txt", "w") as f:
|
with open("ffmpeg-log.txt", "w") as f:
|
||||||
proc = subprocess.run(["ffmpeg", *options.split()], stdout=f, stderr=subprocess.STDOUT, text=True)
|
proc = subprocess.run(["ffmpeg", *options.split()], stdout=f, stderr=subprocess.STDOUT, text=True)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user